

Podstawy przetwarzania danych pochodzących z lotniczego skanowania laserowego w oprogramowaniu LP360 firmy QCoherent

Mateusz Maślanka QCoherent Product Manager mateusz.maslanka@progea.pl

Przebieg prezentacji

🗅 Projekt ISOK

- Firma QCoherent i jej oprogramowanie
- Wizualizacja danych LiDAR w LP360
- LiDAR a dane wektorowe
- Klasyfikacja manualna i automatyczna w LP360
- Generowanie produktów pochodnych
- LiDARServer
- Wykorzystanie danych pochodzących ze skanowania laserowego

Webinarium wkrótce się zacznie

- Grupowe audio nie jest dostępne w podczas webinarium
- Istnieje możliwość zadawania pytań poprzez okno pytań
- Na zadane pytania odpowiemy podczas szkolenia lub zaraz po nim
- Webinarium będzie trwało 60 minut

ſ	File View Help	
	- Audio	
	Audio Mode: OUse Telephone OUse Mic & Speakers	
	♦ 00000000 ♦ 00000000	
	Audio Setup	
	Audio Not Connected Try Again	
Í	 Questions 	5
	Welcome to the practice webinar.	*
	Q: What is the price?	
	>	
		Ŧ
		*
		-
	St	end
	GeoCue Webinar Practice Webinar ID: 964-928-682	

Sprawdzenie ustawień głośności

Jeśli wszyscy mnie słyszą proszę "podnieść rękę"

The view help	
Audio	
Audio Mode: OUse Telephone OUse Mic & Spea	ikers
● 00000000 ● 000	000000
Audio Setup	
Audio Not Connected Try	Again
 Questions 	5
Welcome to the practice webinar.	*
Q: What is the price?	
	-
Π	*
	~
	Send
GeoCue Webinar Practic Webinar ID: 964-928-682	e
GoTo Webinar™	

Firma ProGea Consulting

Projekt ISOK

Informatyczny System Osłony Kraju przed nadzwyczajnymi zagrożeniami

http://www.gugik.gov.pl/projekty/isok

http://isok.imgw.pl/

PAŃSTWOWY INSTYTUT BADAWCZY

Projekt ISOK

Główne cele

- zwiększenie bezpieczeństwa obywateli,
- ograniczenie strat powodziowych.
- Wykorzystanie pozyskanych danych
- modelowanie powodziowe,
- planowanie przestrzenne i urbanistyczne,
- inwentaryzacja infrastruktury,
- archeologia,
- aktualizacja Leśnej Mapy Numerycznej,
- określanie biomasy i wysokości korony drzew,
- bezprawne zajęcie nieruchomości,
- weryfikacja EGiB,
- modelowanie 3D,
- lokalizacje farm wiatrowych lub kolektorów słonecznych,
- i wiele innych...
- Dostęp do danych
- administracja publiczna nieodpłatnie,
- zastosowanie komercyjne odpłatnie.

Projekt ISOK Dane NMT i NMPT

- Charakterystyka danych NMT
 - struktura GRID,
 - model bazujący na punktach gruntu pochodzących ze skanowania laserowego,
 - rozmiar piksela 1m x 1m,
 - pliki zapisane w formacie ASCII (*.xyz) oraz Esri GRID (*.asc),
 - godło arkusza w skali 1:5 000 w układzie PUWG 1992.

Charakterystyka danych NMPT – standard I i II

- struktura GRID,
- model bazujący na punktach pokrycia terenu pochodzących ze skanowania laserowego,
- rozmiar piksela 1m x 1m (standard I) lub 0,5m x 0,5m (standard II)
- pliki zapisane w formacie ASCII (*.xyz) oraz Esri GRID (*.asc)
- godło arkusza w skali 1:5 000 w układzie PUWG 1992.

Projekt ISOK

Projekt ISOK Jak korzystać?

Projekt ISOK Z czego korzystać?

	DANE POMIAROWE NMT	NUMERYCZNY MODEL TERENU			
	format danych	arkusze		format danych	arkusze
	ASCIL_TBD	1:10 000		ESRI TIN	
	LAS 1.2 (chmura punktów LIDAR)	1:2 500		Intergraph TTN	1 4 4 9 9 9 9
X	LAS 1.2 (chmura punktów LIDAR)	1:1 250		Intergraph GRD	1:10 000
	NUMERICZNI MODEL POKRICIA TEREN	U		Warstwice DGN / DXF	
	format danysh	o di vicito		Intergraph GRD	gminy
	ASCII (XYZ)	1.5.000		ASCII (XYZ)	1.5.000
	ARC/INFO ASCII GRID	1:5 000		ARC/INFO ASCII GRID	1:5 000

Koszt zakupu jednego modułu archiwizacji wynosi = 20 zł Koszt zakupu danych LiDAR dla sąsiedniego obszaru = 320 zł Koszt zakupu danych LiDAR dla obszaru Wrocławia = 27 840 zł Koszt zakupu danych LiDAR dla obszaru Polski = 3 745 920 zł Koszt wykonania programu ISOK w zakresie ALS = 17 mln €

Dlaczego dane LiDAR a nie NMT lub NMPT?

- nie tylko zawierają wartość wysokości
- możliwość uzyskania większej ilości informacji
- duża dokładność danych
- dane nie zmienione, nie poddane aproksymacji
- większa elastyczność wykorzystania danych
- możliwość dopasowania parametrów do generowania modeli

Moduł archiwizacji danych typu NMT lub NMPT Moduł archiwizacji danych LiDAR Standard 2

Moduł archiwizacji danych LiDAR Standard 1

Projekt ISOK Z czego korzystać?

CENTRALNY OŚRODEK DOKUMENTACJI GEODEZYJNEJ I KARTOGRAFICZNEJ Start O CODGiK Zasób Mapy, atlasy, przewodniki Obsługa klienta Ogłoszenia Aktualności Kontakt Szkolenie OSNOWY ZASÓB Osnowy geodezyjne, grawimetryczne i magnetyczne Państwowy rejestr granic i powierzchni jednostek podziałów terytorialnych kraju Dane Pomiarowe w formatach: Państwowy rejestr nazw geograficznych Baza Danvch ASCII TBD Ogólnogeograficznych Baza danych obiektów topograficznych Pliki tekstowe zorganizowane w warstwach: Zobrazowania lotnicze 1. p - punkty siatki Ortofotomapa Þ 2. j - obszary planarne Numeryczne Dane Wysokościowe 3. c - cieki Þ Mapy topograficzne 4. k - punkty (koty) wysokościowe Mapy tematyczne 5. o - obiekty inżynieryjne Atlas Rzeczypospolitej 6. pz - punkty na obszarach wydzielonych Polskiei Oferta wydawnicza ► 7. s - linie nieciagłości 8. sz - linie nieciągłości w obszarach wydzieleń 9. z - obszary wydzielone (o obniżonej dokładności np. lasy) NAJNOWSZE ARTYKUŁY

TRENER ProGez

Czcionka: A+ A- Reset NUMERYCZNE DANE WYSOKOŚCIOWE W państwowym zasobie geodezyjnym i kartograficznym poziomu centralnego zgromadzony i dostępny jest Numeryczny Model Terenu (NMT), Numeryczny Model Pokrycia Terenu (NMPT) oraz Dane Pomiarowe NMT i NMPT, wykonane na podstawie zdjeć lotniczych, skaningu lotniczego oraz map topograficznych. Wszystkie dane wysokościowe wykonane są w układzie współrzednych płaskich prostokątnych "1992", a wysokości odnoszą sie do układu wysokości normalnych "Kronsztadt 86" Numeryczne Dane Wysokościowe udostępniane są w postaci cyfrowej.

- 19.02.2013 nowe opracowania Bazy Danych Obiektów Topograficznych w pzaik 18.02.2013 - nowe
- opracowania Bazy Danych Obiektów Topograficznych w
- pzaik 15.02.2013 - Nowe opracowania NMT ze skaningu
- laserowego 06.02.2013 - nowe
- opracowania Bazy Danych Obiektów Topograficznych w pzaik
- 05.02.2013 nowe
- opracowania Bazy Danych jektów Topograficznych w

Poszczególne pliki odpowiadają zasięgom arkuszy w układzie współrzędnych płaskich prostokątnych "1992" w skali 1:10 000. Interwał siatki wynosi od 10 do 50 metrów. Źródłem danych były zdjęcia lotnicze lub mapy topograficzne

	4-34-11	7-D-d-4	_c.asc	 Notatnik 	
Pik	Edycja	Format	Widok	Pomac	
540	073.58	3 73271	17.48	119.72	
540	076.6	5 73272	2.73	119.64	
540	081.7	73277	3.29	119.56	
540	125.03	7 73271	L7.82	119.31	
Sta	rt				
540	158.59	9 73237	78.77	119.31	
540	178.42	2 73240	2.28	119.34	
540 540	197.14 214.58	3 7324	10.20	118.89	
End	L. 4 1 2 1			1101/1	
Sta	rt .				
54 U 54 O	218.7.	2 73240	75 94	118.74	
End			5.04	110.30	
Sta	rt.				
540 540	226.19	9 73241	19.46	118.42	
540	273.5	1 73257	75.13	117.75	
540	278.8	3 73259	3.36	117.58	
540	283.21	73263	10.50	117.52	
540	290.38	3 73262	7.59	117.32	
540	295.82	2 73263	2.20	117.20	
540 E od	319.90	5 7326/	18.62	116.92	
Sta	rt				
540	440.Z	73253	\$0.17	118.29	
540 540	443.74	1 73257 3 73264	77.50	117.90	

http://www.codgik.gov.pl/zasob/372numeryczne-dane-wysokosciowe.html

Formaty wymiany danych

ASCII XYZ

- dla każdego punktu atrybuty
 zapisywane są w odrębnej linijce
- poszczególne atrybuty oddzielone są separatorami
- umożliwia przechowywanie atrybutów:
 x, y, z, intensywności, klasyfikacji,
 kolejności odbicia, linii lotu, kąt
 skanowania, czas GPS, RGB

LAS (ASPRS)

- otwarty format wymiany danych LiDAR
- znacznie szybciej wczytuje się niż format ASCII
- Umożliwia przechowywanie informacji dotyczących całego pliku w nagłówku, informacji
 - o atrybutach w punkcie oraz pełnej długości fali

Firma QCoherent

LP360 i LiDARServer

- innowacyjny dostawca narzędzi do przetwarzania chmury punktów LiDAR,
- rodowisku ArcGIS,
- pierwsze rozszerzenie LP360 dla ArcGIS zostało wydane w 2006 roku.

Kto jest klientem QCoherent?

Rodzaje oprogramowania LP360

Zalety oprogramowania LP360

- **Rozszerzenie ArcGIS**
- Obsługa formatu LAS
- Narzędzia przetwarzania danych LiDAR
- Opcje przeglądania chmury punktów
- Częste aktualizacje

Podstawowe cechy oprogramowania

- □ Wizualizacja danych LiDAR,
- Możliwość ładowania dużych objętości danych,
- Integracja z plikami SHP oraz zobrazowaniami,
- Narzędzia kontroli jakości i dokładności chmury punktów,
- Narzędzia interaktywnej i automatycznej klasyfikacji chmury punktów,
- Wykonywanie obrysów dla sklasyfikowanej chmury punktów,
- Tworzenie i wizualizacja linii nieciągłości ternu.

TRENER ProGea

Okno główne oprogramowania

LP360 i LiDARServer

20

Wyświetlanie okna profilu i okna 3D LB60 Basic

Import i Eksport w LP360

and the second		
	Charles	- mener 20
import	Export Type Surface Filter	eksport
 dane LiDAR LAS ASCII (XYZ+) MG4(.sid) 	Surface Surface Method: Triangulation (TIN) No Data: Triangulation (TIN) Inverse Distance Weighted (IDW) Cellsize: 10.0000 Map Units Breakline Enforcements	
G	Surface Attribute(s) to Export: Export Format: Binary Raster Elevation Slope Aspect Hillshade Contours	IRaster
ERRES CONAUSA	Help Cancel < Back Next > Finish Quart de Barlage • AS	ry Raster GRID SCII XYZ
ENER Proces	LP360 i LiDARServer	

Eksportowane modele powierzchni LB60 Basic

Nachylenie

Analiza łączeń szeregów

MAPPE-MONDE

Table Table x °___ 톱 - | 🔓 🌄 X (†) - 탐- 특 📢 seamline ok_grunt_samples seamline ok_grunt_seams × х RMSE1 2 ID IDSrc1 IDSrc2 Shape ID IDSrc1 IDSrc2 dZ2 1 FID Shape FID ۰ Polyline ZM 0 2 0.0481 608 Point ZM -9999 1 2 3 0 1 Polyline ZM 2 3 0.0403 2 -9999 1 609 Point ZM 3 1 1 2 Polyline ZM 2 3 0.0226 4 610 Point ZM 1 2 3 -9999 2 3 Polyline ZM 3 5 4 0.0663 611 Point ZM -9999 1 3 Polyline ZM 4 5 6 0.0289 4 612 Point ZM 1 2 3 -9999 5 Polyline ZM 5 7 6 0.034 2 -9999 613 Point ZM 1 3 7 6 Polyline ZM 6 8 0,0156 Point ZM 2 3 -9999 1 614 I 7 Polyline ZM 7 8 9 0.0315 2 615 Point ZM -9999 1 3 2 616 Point ZM 1 3 0.004 2 0,0223 617 Point ZM 1 3 618 Point ZM 1 2 3 0.0351 619 Point ZM 2 1 3 0,0205 620 Point ZM 1 2 3 0.036 Point ZM 1 2 3 0.0195 621 622 Point ZM 2 0.0255 1 3 623 Point ZM 2 0.0365 1 3 2 0.035 1 3 624 Point ZM 2 3 0.0244 625 Point ZM 1 (0 out of 8 Selected) 1 ▶ I4 • ⇒FL 1 (0 out of 2804 Selected) H -۲ ۶L seamline ok_grunt_samples seamline ok_grunt_seams seamline ok_grunt_samples | seamline ok_grunt_seams 化物 かんわり たいしん 通知 日本の ためみ どうたいかくろう

Edit Sk

wektoryzacja linii nieciągłości terenu

			11111 - Contra 1 - Contra					and the second			a think it is a first	
man 1		LP36	0 Digiti	ize Breaklir	nes							
		Act	ive Con	flate Task:	Stream	Centerline	(Downstre	am Constr	aint) 🔻	1221	<u>_</u>	Options •
		1 APP					u-Saill(teis		an a		60405	Banker
							nn suite				554	
etch Prope	rties		- P	×			and and	No. and			1	
ZM	🚰 Finis	h Sketch										
х	γ	Z	М		1	(Anna) (Anna)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				5564	
1533	1978	845.196	0.000					9.10 - 20				
1533	1977	845.988	1.020				Constant States					
1533	1977	846.639	0.000					30.00			5.5	
1533	1977	847.453	0.000				1				SA	
1533	1977	848.195	0.000		and free					223		
1533	1977	848.299	0.654			in the second			Sich		38	
1533	1977	848.439	0.000							- N.		

N. N. N. N.	<u>i</u>				
	#	Х	Υ	Z	
	0	1538557.161	201729.528	896.750	
	1	1538565.637	201742.243	896.750	
	2	1538575.703	201748.070	896.750	
	3	1538591.066	201748.600	896.750	
	4	1538610.668	201747.541	896.750	
	5	1538617.555	201741.713	896.750	
	6	1538627.621	201734.826	896.750	
	7	1538631.859	201727.409	896.750	
		# 0 1 2 3 3 4 5 6 7	# X 0 1538557.161 1 1538565.637 2 1538575.703 3 1538591.066 4 1538610.668 5 1538617.555 6 1538627.621 7 1538631.859	# X Y 0 1538557.161 201729.528 1 1538565.637 201742.243 2 1538575.703 201748.070 3 1538591.066 201748.600 4 1538610.668 201747.541 5 1538617.555 201741.713 6 1538627.621 201734.826 7 1538631.859 201727.409	# X Y Z 0 1538557.161 201729.528 896.750 1 1538565.637 201742.243 896.750 2 1538575.703 201748.070 896.750 3 1538591.066 201747.541 896.750 4 1538610.668 201747.541 896.750 5 1538617.555 201741.713 896.750 6 1538627.621 201734.826 896.750 7 1538631.859 201727.409 896.750

Integracja chmur punktów z wektorem GIS

MONIERINE DE CHARTRES

G

ABY

TRENER ProGea

Tworzenie plików SHP 3D

Elevation Confla	tion/Classify Dialog					? 🔀	"Appende		-
Input Dataset Layer/Dataset:									
Data Types							Sketch		
Fields:			Im	nort	Save		Z	м	
ricius.							. 857,218	0,000	
Тире	Conflation Method	Buffer	Distance	Classificat	ion	Classifu Pc	. 856,958 856,526	0,000	
Туре	Connation Method	Duner	Distance	Classificat	1011	Classily I C	. 856,240	-3.163	
							. 855,943	0,000	
							. 855,873	0,000	
							. 855,853	-0,849	
							. 855,835	-0,079	
							. 855,819	-0,274	
							. 855,790	0,000	_
							. 855,227	0,000	÷.
1						5	. 855,093	-0,276	
							. 854,964	0,000	
							. 854,685	0,000	
- Options							. 854,174	0,000	
							. 853,005	0,000	
The filter defines	the set of points that are used	by the					. 852,855	0,000	
conflation metho	ds, and/or classified within the	specifie	d	Modify Poin	nt Filter		. 852,007	0,000	
buffers of the fea	atures		_				851 972	0,000	
							851 864	0,000	
							851,290	0,000	
Desekling outers	annuts define feetures that an						. 850,720	0,000	
Breakline enforc	ements define reatures that ge	t usea in					. 849,344	0,000	
building of surfac	es during the conflation proces	SS.	M	lodify Break	line Enforceme	ent 🔰			
				-			and the second second		
							Differences		
🔽 Output Dataset —									
Output File:					_				
output rile.							and the first		
🔲 Copy Attrib	utes from Input Layer to Outpu	ıt File						S.F.	
				Co	nflate	Cancel	NTH'S		

Automatyzacja pracy

Add Point Cloud T	ask 🛛 🖓 🔜 🗙
Class Type:	Adaptive TIN Ground Filter
Task Name:	Basic Filter Height Filter
Task Description:	Macro
Classifies points b classification algo	Model Key Points Filter Planar Point Filter Point Cloud Statistics Extractor Point Group Tracing and Squaring
	Statistical Noise Point Filter

Table Of Contents

Ψ×

Automatyczna klasyfikacja chmury punktów

8: U		的问题是此间是对于自己的言语。			en chies a tailor 10.000			
Point			出生有效的 动动的 生物			$(0, 0) = \{0, 0\}, \{0,$	10^{-1}	
M_klas	syfikacja_chmury		和時間 的现在分词 化	\mathcal{P}_{i}^{0} , \mathcal{P}	an a	1945 m ^{ar} a no 1959	为"多水"的行为方面	9 8
low_fi low_s grunt filtr wy hight budyr	I asks Iker Zumy Remove Point Move Up			$\psi_{i}^{(n)} = \psi_{i}^{(n)} \psi_{i}^{(n)} \psi_{i}^{(n)}$		Execute Point Cloud Tasks Execute Area Run For Project Run Pur Paluages		leated Polyana
Prope Destin 6 B Units: Point Maxin Wind	Inter The Spacing: 5.00					 Hun By Polygons Task(s) to Execute Single Task: Polygon Field Name: Task List Task Name Iow_szumy grunt filtr wysokosciowy 	Use Se	lected Polygons
Z Thr Plane Min S Max S	eshold: 0.20 Fit: 0.40 lope (Deg): 0 Slope (Deg): 45 um Height: 2	$(\frac{1}{2} + $				hight_point budynki < Keep dialog open after tas	Not Required Not Required III	Exit
Minim Maxin Clean P 100 V Us	um Height: 3 IUp Percent (0 Se Height Filter Ground Points							d Tasks → × Ø 🖹 Ø 🗮

Generowanie obrysów dla chmury punktów

ENER ProGea

LiDAR Server

MAPPE-MONDE

TRENER ProGea

Style wyświetlania chmury punktów

- Januardan Jan

G

Okno profilu

able Of Contents

🖃 🥌 Layers 🖃 🗌 obszar 🖃 🗹 Zakopane LiDAR LIDAR Layers

: 📮 😞 📮 🛅 🎦 🗉

Default

- TIN of LIDAR Points

LIDAR Points LAS File Boundaries

LiDAR Server w ArcGIS

All Points, Elevation Colorization Style All Points, Classification Colorization Style All Points, Intensity Colorization Style All Points, Return Colorization Style

Ground Points, Elevation Colorization Style

Ground Points, Classification Colorization Style

Ground Points, Intensity Colorization Style Ground Points, Return Colorization Style Ground Points, RGB Colorization Style

http://69.73.17.83/Poland2?

Pobieranie danych z LiDAR Server

W oknie "Download LiDAR" wybierz narzędzie zaznaczania obszaru do pobrania.

Wybierz rodzaj filtracji danych do pobrania.

3

Zaznacz narzędziem zaznaczania obszar zainteresowania.

Pobieranie danych z LiDAR Server

Pobieranie danych z LiDAR Server

6

Dane LiDAR są teraz zapisywane na twoim dysku.

Pobieranie danych z LiDAR Server

7

Teraz możesz używać danych w oprogramowaniu LP360.

LIDAR Server

Demo

Podsumowanie

- LP360 działa w środowisku ArcGIS
- Może pracować z wieloma plikami LAS
- Szybkie i wygodne narzędzie kontroli jakości
- Możliwość klasyfikacji chmury punktów
 Ekstrakcja obrysów z chmury punktów
 Tworzenie linii nieciągłości ternu
 Tworzenie produktów pochodnych
 Zarządzanie chmurą punktów z poziomu przeglądarki internetowej (LiDAR Server)

Oprogramowanie QCoherent

MAPPE-MONDE

Home

LP360 Free 30-Day Evaluation

*R	eq	ui	re	d	Fie	le

First Name*:		
Last Name*:		
Organization*:		
Phone*:		
E-mail*:		

A valid e-mail address is required to download evaluation software. You will receive an e-mail from **evaluation@qcoherent.com** with download instructions. If you have not received an e-mail in a resonable amount of time, please check your junk mail folder.

Additional information that will help us understand your particular needs:

How did you hear about LP360?

Anything else you'd like to share with us?

Dziękuję za uwagę

Mateusz Maślanka QCoherent Product Manager mateusz.maslanka@progea.pl

LIDAR

zarządzanie terabajtami danych LiDAR (ALS, TLS, MMS);

dynamiczne modelowanie powierzchni.

el: 16,00 Lat.Lon: 44,591279, -93,866

interaktywny wybór i ściąganie chmur punktów z serwera; łatwe do wdrożenia rozwiązanie geoinformatyczne; wizualizacja chmury punktów LiDAR, oraz

ProGea

ProGea Consulting

ul.. Pachońskiego 9 31-223 Kraków tel.: 12 415 06 41 office@progea.pl

facebook.com/ProGea

rofile Depth 5.0 fe

esri Partner Network

Coherent

ProGea Consulting

ul. Pachońskiego 9 31-223 Kraków tel.: 12 415 06 41 office@progea.pl www.progea.pl

facebook.com/ProGea